# Energy Lab Nordhavn

#### **JAN ERIC THORSEN**

Director, Application Centre Danfoss Heating Segment

July 04 2018, GRAZ



#### **NORDHAVN – THE PERFECT FRAME FOR INNOVATION**

Objective of Energylab Nordhavn

To develop

# new methods and solutions

for design and operation of the future

## cost-effective integrated energy system

based on Nordhavn as a

## globally visible real-life laboratory





#### **NORDHAVN – SUSTAINABLE ENERGY AND TRANSPORT**

- Over the next 50 years, Nordhavn will develop into a **new district** with 40,000 residents and 40,000 jobs.
- The ambition is to become an **example of a future sustainable city**, supporting Copenhagens 2025 **carbon-neutrality** goal.
- This requires **innovation** in urban design not least of energy infrastructure



#### **PARTNERS FROM MULTIPLE SECTORS**



Authority and city development

Energy Infrastructure Industry and consulting engineers

University and data infrastructure

2015-2019, Budget 19 M€, Public funding 11 M€ from EUDP



# Nordhavn 2007

- dumminut

# Nordhavn 2017





#### Danfoss led demonstrations of integrated solution

#### Havnehuset

Demonstration of flexible district heating and low temperature district heating Q4 2016



#### Supermarket

Demonstration of Heat Recovery Q3 2018

#### Terra Nova

- 10 appartments with smart control of heating systems
- Measuring of thermal capacity in four apparments
  Q4 2016



#### **ULTDH HEAT BOOSTER SUBSTATION**



Example on heat and power integration



sources

#### **ULTDH HEAT BOOSTER SUBSTATION**



Example on heat and power integration





22 Flats 8 Risers



#### **ULTDH HEAT BOOSTER SUBSTATION**



Example on heat and power integration



13 | ENERGYLAB NORDHAVN

#### ULTDH HEAT BOOSTER SUBSTATION

Example on heat and power integration

#### Essential Performance, based on two days:

Monday 12.03.2018

V DHW [L] DHW Energy [kWh] DHW circ. Energy [kWh] MHP elec. Energy [kWh] SHP elec. Energy [kWh] Electric share [%] DH flow [°C] T DH ret [°C] Energy DH [kWh]





Sunday 18.03.2018

#### **Smart Control of Heating System**



Example on heat flexibility



- Setpunkt ----- Temp smart ------ Temp normal

Load Shift Potential in average 100 kwh/day





Varme -Setpunkt -Temp normal



#### Supermarkets, Source of waste heat and flexibility

Example on heat and power integration

- Waste heat from refrigeration is exported to district energy networks
- Supermarkets can add flexibility and become storage enablers for heating and cooling
- Coupling of power and heat infrastructures
- Typical 60 kW in summer
- Typical 40 kW in winther



#### Supermarkets, Source of waste heat and flexibility



Example on heat and power integration





#### Supermarkets, Source of waste heat and flexibility



Example on heat and power integration

#### Flexibility in supermarkets



| Parameter                                                | Value     | Comment                                                               |
|----------------------------------------------------------|-----------|-----------------------------------------------------------------------|
| Thermal storage of a typical supermarket                 | 25 KWh    | 5°C temp. change in 20 cabinets of 500 kg food, $C_p$ =1,7 KJ/(KG °C) |
| Compressor cooling capacity to maintain normal operation | 100 KW    | Full capacity is 250 KW                                               |
| Compressor power with a COP of 2,5                       | 40 KW     | COP will vary during the year                                         |
| Time with 100 % - 60% reduced power                      | 15-25 min |                                                                       |
| Time without Defrost                                     | 90 min    | Defrost event is not dependent on the cooling capacity event          |
| Defrost power flexibility                                | 13 KW     |                                                                       |
| Total power flexibility                                  | 53 KW     | For 500 stores adds up to 26,5 MW                                     |

#### EnergyLab Nordhavn – Showroom & EHUB at pakhus 47, Sundmolen

N 111 -



TT D G



# **Thank You for the Attention**



#### Jan Eric Thorsen

Danfoss Heating Segment Application Centre DK - Nordborg Jet@danfoss.com +45 3058 0444

